Myce.com Latest Updates

Why DVD+R(W) is superior to DVD-R(W)

Posted 23 June 2003 02:13 CET by Robin van Lieshout


Article Why DVD+R(W) is superior to DVD-R(W)
Date June 2003
Author Michael Spath

Since the war between DVD+R(W) and DVD-R(W) started, several comparisons of the two formats have been published, but none of those I read did contain really accurate technical information. Instead, journalists relied on public press releases and white papers provided by vendors to write their articles, resulting in the end into superficial explanations and sometimes contradictory conclusions.

The main problem here is that getting DVD+R(W) and DVD-R(W) standards require money and NDAs, so that little detailed technical information about these formats can be found on the Internet. This is very unfortunate, as it prevents both journalists and techies from all over the world to independently review, compare and choose the best format by themselves.

Because they cannot access the technical details (or simply due to laziness), some people prefer to carefully conclude that there's no real technical difference between the two formats, and that if you forget all the marketing propaganda + and - are equally good. To me this is an evidence that such people have not understood (or more probably not even read) the format specifications.

After having studied the two formats I found that there are several fundamental differences between them, and I concluded that + is superior to -. The goal of this paper is to present the technical details from the specifications that led me to this conclusion, so that anyone with basic engineering knowledge can make his own opinion. This article is by no mean exhaustive, and some exclusive + and - features (e.g. CAV writing or copyright management) are not tackled here because I considered them less significant. Note that this article is pretty technical, so some understanding of optical storage technologies is required.

Pre-pits versus ADIP

To help its recording, a blank disc usually gives 3 kind of information to the drive : tracking (so that the pits are correctly written along a track), addresses (so that the drive can write at the good location) and speed (so that the disc is spinned at the correct velocity). With CD-R(W), tracking and speed information are carried by the wobble, while addresses are contained in the ATIP data (Absolute Time In Pregroove, a frequency modulation of the wobble).

DVD-R(W) format uses a slow wobble (140,6kHz) for tracking and speed, and the addressing (and additional) information is carried by the land pre-pits (pre-recorded pits between grooves). On the groove signal, pre-pits give amplitude spikes.

DVD+R(W) format uses a much faster wobble (817,4kHz), and the addressing (and additional) information is carried by a phase modulation of this wobble called ADIP (ADdress In Pre-groove).

As taught by signal theory, the phase modulation method has a better noise immunity than the pre-pits method, and therefore ADIPs are generally more robust than LPPs against all external disturbances (electrical noise, disc tilting, focusing problems, etc). Apart from the usual sources of noise in a drive, a particularly annoying example of this problem occur when you are burning data on a DVD-R(W) and try to read the pre-pits information at the same time : because the light emitted by the burning laser is interfering with the reading beam, correct pre-pits detection is much more difficult to achieve, which can jeopardize linking precision.

But the pre-pit technology is not only a weakness against noise, it also becomes a limiting problem as the speed of the disc increases, because at high speeds pre-pits are more difficult to detect than phase inversions. Indeed, on the wobble signal the pre-pit information only exist where the pre-pit is located in time, while the information of phase inversion is spread over the complete inverted period of wobble (or more, actually as long as the phase is not inverted again). According to the specifications, the minimum length of a DVD-R(W) pre-pit is 1T (1/26.16E6 s), while a DVD+R(W) wobble period lasts 32T, which makes it much easier to detect.

Another bad side effect of this pre-pits method is that DVD-R(W) mastering is made more difficult than with DVD+R(W), since a higher precision is required to cut both the grooves and the pre-pits between them. Special dual-beam recorders are usually required for - stamper mastering, although some manufacturers now also use single beam cutting.

Not only are the pre-pits more error prone than phase modulation, but data they carry are also less protected. In one ECC block pre-pits carry 192 bits of information (one pre-pit block). Out of these 192 bits, 48 are not protected by any error correction mechanism, 24 bits are protected by 24 bits of parity (A parity), and the last 56 bits are also protected by 24 bits of parity (B parity). All in all, this strange heterogeneous structure finally gives a pretty weak protection to the information bits carried by pre-pits.

On the other hand the corresponding DVD+R(W) structure is 4 times smaller : one ADIP word is 52 bits large, consisting of 1 sync bit, 31 data bits and 20 parity bits (which protect all data bits). One ECC block contains 4 ADIP words, so 204 bits of information in total. Also each ADIP word contains the full ECC block address, while 4 times this size are needed in the - technology to extract this address : this gives significant speedups when seeking uses this method.

Defect management and recording quality

Another major advantage of DVD+RW format over DVD-RW (although no drive support it yet) is hardware defect management provided by the DVD+MRW standard (Mt Rainier for DVD+RW). On a DVD+MRW disc, when an error occur during a read or write access to an ECC block, this block is flagged as bad and the drive will not use it any more. Instead, when writing to the disc, data which should have been stored in this bad block are relocated elsewhere ; likewise, when the drive is asked to read these data again, it will fetch them from the new location. These operations are completely transparent for any software (whatever operating system, driver or burning application is used), and while the initiator is requesting consecutive sectors the drive will actually read data from various locations : this new abstraction layer is called Logical to Physical address translation.

As a side note, popular belief is that defect management is only useful when burning new discs (where data which are being written can also be read back, checked and moved to another location if needed), but that it is helpless on discs which get damaged after they have been burned. This is wrong, because when an ECC block is partially damaged and requires several retries to be read (or for instance give too many PI/PO errors), these data can proactively be moved to another clean location on the disc before media wear-out makes them unreadable. Of course, if an ECC block is damaged beyond error correction capabilities, data are definitely lost ; however, only very serious damages can make such a thing happen, as PI/PO correction can handle burst errors larger than 6 mm.

As with formatting, DVD+RW standard enables background verifications, i.e. the disc is checked for defects when the drive is idle. Of course, at any time the user can still read or write to the disc, or eject it from the drive ; background verification would then resume later from where it was stopped. Combining these features together gives a very powerful system which can continuously try to improve the longevity of discs : while the user performs its usual operations, the drive can check in the background the complete surface of the disc and move data from damaged locations to clean areas. Such advanced use of defect management are already described in the DVD+MRW specification, for instance with the Self Monitoring Analysis and Reporting Technology (SMART, a technology inspired from hard discs). Finally, it is important to mention that DVD+MRW provides full read-only compatibility for players which don't understand MRW.

Although DVD-R(W) also support some defect management (Persistent-DM and DRT-DM), it is mainly software based and actions must always be initiated by a specific program. Furthermore, since DVD-RW format lacks the needed structures, address translation has to be performed also by software, and translation tables have to be stored on the user area of the disc according to a higher level specification (for instance in the sparing tables of UDF 2.0). This makes DVD-RW not well suited for simple file storage or image burning, as it requires a complete file system to benefit from defect management. Note also that although DVD-RW cannot use +MRW technology (due to technical differences), DVD+RW can very well use UDF 2.0.

Also a DVD+R(W) disc allows a drive to achieve better writing quality (independently of media quality), because it gives more information to a drive than a DVD-R(W). Indeed, just like with CD-R(W), the best writing settings for a given disc are found at startup during the OPC (Optimum Power Control) algorithm, which use data contained in the pre-pits blocks/ADIP words. And regarding OPC, a DVD+R(W) gives not only more information (e.g. power dependency on wavelength) but also more precise ones (e.g. startup laser power). Moreover, all these information are available for 4 different speed ranges (primary and upper speeds, normal and 4x+ mode), while - format only provides one set of data. This is very important because optimal writing settings are very sensitive to burning speeds. Also the OPC test area of DVD+ is 32768 sectors in total, compared to 7088 sectors for DVD-.

Linking

When for any reason writing on the disc has been stopped and is resumed, new data have to be linked with the old ones. Linking is a very important and tricky task, which can cause various problems both at physical and logical level. First, a short overview of the linking methods used by the two formats is required.

With DVD-R(W), 3 different linking methods can be used : 2K linking, 32K linking, and loss-less linking. In all cases recording has to stop 16 bytes after the first sync of the first sector of an ECC block, and new data are recorded starting between the 15th and the 17th byte of this same frame. The precision of the linking is therefore 2 bytes and the space waste either 2KB, 32KB or nothing (note that loss-less linking method does not work with DVD-R for Authoring). With DVD+R(W), linking is performed in the last 8 channel bits (4 data bits) of an ECC block. Linking precision is therefore 4 times higher and loss-less linking is the only method allowed by the standard, which guarantees no space waste.

Even when loss-less linking methods are used, the pits are not perfectly contiguous on the disc, and therefore some PI/PO errors will always occur : to minimize this effect, the location of the linking region is very important. With -RW, the linking region is in user data, and therefore useful bytes will always be corrupted there. Also since the linking occurs after the first sync, the second sync frame (and possibly the third one) will also be lost, since the sync words will not be correctly spaced in the ECC block. With +RW, the linking region is in the last byte of PI correction, which leaves user data bytes untouched. Also the linking position guarantees that all syncs in the next ECC block will be corrected spaced, which gives at least one sync frame less to correct for the player compared to -RW. Note that with +RW, corrections due to the linking region and corrections due to the sync shift are split between two ECC blocks, while they must all be performed by a single ECC block with -RW.

Linking can also cause various troubles at physical level, and when looking directly at the HF signal read by the PUH, the linking region looks like the following:

The slicing level is the digital threshold which separates zeroes from ones, and therefore it must always be centred in the HF signal for good reading quality : when the slicing level deviates too much from its perfect position, the run-lengths (3T to 14T) are wrongly recognized, which causes decoding errors. But as explained previously linking is not perfectly accurate, and therefore a gap will always exist between the two recorded sessions, and the longer the gap, the further the slicing level can drift. Furthermore, between the two linked regions the slicing level can also differ, because of various physical parameters which could have changed between the two recording sessions (laser power, media properties, recording speed, etc) : when this jump is too high, again errors appear. So the smaller the gap and the jump, the better quality and compatibility we get : -RW allows a 32T large linking gap and does not care about this slicing level jump, while +RW allows a 8T large linking gap and a maximum limit for this jump under any condition. This makes +RW loss-less linking also more powerful at physical level.

Multiple recording sessions and compatibility

If you want to partially record a DVD-R(W) disc and use it immediately, but also want to be able to record more data later, border zones are used, which are meant to make this partially recorded disc compatible with standard DVD-ROM players. So every -R(W) recording session has to start with a border-in area (except the first one, which starts with the lead-in) and stop with a border-out area.

However, the size of these border zones is quite amazing : 32 to 96 MB for the first zone, then 6 to 18 MB for the next ones. This means that a disc containing 3 recorded sessions can require up to 132 MB (more than 2% of the complete storage capacity) just for separating these regions. Furthermore, the border-out and border-in areas have to be linked together, using one of the 3 methods (and the possible associated problems) explained previously. Note also that for some unknown reason a border-out is needed before the lead-out, while the first border-in is replaced by the lead-in.

On the other hand, when multiple recording sessions are used on a DVD+R(W) disc, Intro and Closure zones are used (the counterpart of border-in and border-out), but they are always 2 MB large : therefore, with + format, a 3 sessions disc always uses only 4 MB to delimit the regions (the lead-out replaces the last Closure zone). Also a nice feature of multi-sessions implementation on DVD+R(W) is that one can use a session to reserve space, i.e. sectors which are left unrecorded (this blank area is called Reserved Fragment). Thus, additional data can be recorded in next sessions while the first one will only be written later : this can be useful for instance when a precise location on the disc has to contain file system tables, which can only be filled after all the files have been written to the disc.

Compatibility is a very sensitive topic when comparing the two technologies, but independently of media, recorders and players quality, some logical causes of incompatibility can be noted. Indeed, both recordable formats use values in the lead-in structures which were forbidden or reserved in the first DVD-ROM specification (e.g. disc structure, recording density, etc) and which can cause compatibility failures on some old or particularly picky players.

A famous example of such logical incompatibility is the "Book Type" field, which indicates the type of the disc. The first DVD-ROM specification only allowed 0 (i.e. read-only) to be written there, but later each recordable format defined its own value to identify itself ; unfortunately it turned out that some players simply refuse to read a disc with a non-zero value. To handle this problem, the latest DVD+R standard specifically authorizes to write a zero Book Type for compatibility reasons, and nowadays many drive manufacturers have made this bit programmable. But this cannot be done for DVD-R(W), as the Book Type (with several other information in the lead-in) are pre-embossed (i.e. pre-recorded) on blank media. Note however that although it reduces compatibility, this pre-recorded Book Type also improves copy-protection security, as it enables any player to easily identify a DVD-R(W) disc.

An additional compatibility risk exist with DVD-(W) in the user data area and is introduced by the 2K/32K linking methods. Indeed, the linking sectors used with these methods must use a special data type to be differentiated from normal data sectors, and this value was not allowed in the original DVD-ROM specification. There's no known study about the impact of this field on compatibility, but sector headers are a vital part of the decoding process, and therefore it is always safer to keep them fully compliant with the strictest DVD-ROM standard.

Conclusion

During my study of rewritable DVD formats it seemed very clear to me that DVD-R(W) standard was not as well designed as DVD+R(W) (or even DVD-RAM). And although some serious efforts have been put in the latest revisions of the - format to fix some of the original problems (at the cost of a much increased complexity), it still remains technically inferior to +, due to some intrinsic weaknesses (e.g. pre-pits). This is not very surprising, as Sony and Philips have a much longer experience at defining standards than Pioneer (and several key patents), and they also had the advantage to publish their standards after their competitors.

Although the arguments presented in this document might look like technical details to most readers, disc format is what defines the limits of what drives can do with a given medium, both in terms of performances and features. Therefore, the technical advantages of the DVD+R(W) format will with time turn into faster, more powerful and more reliable drives for end users. This is already the case today, and the gap will continue to increase as DVD+R(W) drives will exploit more and more of the advantages of the + format. However, as history showed, the best ideas are not guaranteed to win on technology markets, and only time will tell which format becomes the new standard.

Acknowledgements

I would like to thank the engineers from Pioneer Japan and Philips Netherlands who reviewed early versions of this article for their most useful corrections and comments (note that this only means that these people kindly contributed to the technical correctness of the article, not that they - or their company - agree with my conclusions of this article). Also many thanks to J.W. Aldershoff for having suggested and organized these reviews, and for hosting this article.

Disclaimer

This article is meant to be a list of technical arguments showing some of the advantages of the + format over the - format, and it reflects only my personal opinion, and not the one of CD Freaks. It is not a detailed comparison of the two formats, and it does not take into account specificities of drives, media or third party software : only the format differences are compared here, as described in the DVD-R 2.0, DVD-RW 1.1, DVD+R 1.1 and DVD+RW 1.1 standards. Corrections are welcome by email, but questions and contradictory opinions should be posted to our forum, so that everyone can benefit from an open discussion.

Michael Spath - spath@cdfreaks.com


Ian@CDRLabs.com
CD Freaks Member
Posted on: 23 Jun 03 00:40
Hasn't hardware based defect management been a feature of the DVD+RW format since day one?
0 Agree

ckin2001
MyCE Resident
Posted on: 23 Jun 03 09:11
the article says that while hardware based defect management is a feature of dvd+rw, it has not been implemented in any drive as of yet.
0 Agree

Ian@CDRLabs.com
CD Freaks Member
Posted on: 23 Jun 03 11:42
If thats the case, then every drive manufacturer out there has been falsely advertising this feature since the first DVD+RW drive was announced.
0 Agree

alexnoe
CDFreaks Resident
Posted on: 23 Jun 03 16:21
Indeed...I see a large gap between what dvd+rw is capable of, and what dvd+rw drives nowadays can do...
0 Agree

buzzy
New on Forum
Posted on: 23 Jun 03 21:25
You would hope DVD+R is a better format, as they had the benefit of seeing what -R could do. This article is interesting and a start, but the bottom line on what it means to an end user isn't clear. Not surprisingly, it's probably not a compelling difference for many. The real issue is which things are relevant to an end user. Those get a little lost in the article, but they include: - Better ECC - Better power calibration info - Better linking - Less space lost in multiple writes The compelling item, defect management, isn't all that relevant - who would really use RW? RW isn't a stable medium. Unfortunately starting with the physical aspects (especially pits), no matter how much better you believe it to be, isn't entirely convincing by itself - it's only several processing stages later that data gets delivered from a drive. That is, you have to evaluate the net effect on the whole chain (from data to write to read to data). Looking at what happens at the physical level by itself isn't all that informative, as ECC is there to offset the physical issues.
[edited by buzzy on 23.06.2003 23:39]
0 Agree

spath
Optical storage technical expert
Posted on: 24 Jun 03 19:13
> That is, you have to evaluate the net effect on the whole chain > (from data to write to read to data). Looking at what happens at > the physical level by itself isn't all that informative, as ECC > is there to offset the physical issues. The point here was to show that linking problems on - format can be caused by inferior design at two independent levels (logical and physical), whose bad effects are summed. I agree that it would have been more interesting with figures showing the impact of this physical effect, but I could not obtain those.
0 Agree

comomolo
New on Forum
Posted on: 26 Jun 03 15:41
I don't quite get this. Philips says its drives are Mt. Rainier compatible. Is this not the same thing as having defect management built in? Isn't DVD-MRW just about that?
0 Agree

Kenshin
MyCE Resident
Posted on: 28 Jun 03 21:54
What Philips drives? What does not have built-in Defect Management? DVD-MRW or DVD+MRW?
0 Agree

TexasGuy
CD Freaks Member
Posted on: 22 Jul 03 18:31
Ain't Pioneer A06 has Defect Management? I think it does.
0 Agree

dvdendec
New on Forum
Posted on: 08 Aug 03 14:55
What are technical disadvantages of DVD+ compared to DVD- format?
0 Agree

DVDFreaktron
New on Forum
Posted on: 15 Sep 03 11:43
The way I heard it, DVD -R and -RW were designed to be most compatible with stand-alone DVD players. Precisely how are +R and +RW superior with regard to playback in stand-alone DVD players, if they are, compared to -R and -RW? :X
0 Agree

archer10
New on Forum
Posted on: 16 Sep 03 02:32
I don't think this point should be underestimated. I think it is misleading for Spath to criticize compatibilty based on players barfing over unexpected reserved fields, but not mention that the reason that logical layer enhancements like defect management were deliberately avoided in DVD-R was to maintain compatibility with existing players (pre VD+.) Players that barf over unexpected values or non-zero reserved fields are likely to be in violation of the spec anyway. I don't have the specs, but it is common for technical specs to recommend that reserved fields or unexpected values be ignored in most cases. The exception to this would be a field whose specific purpose is to declare an incompatible change. Can I also object to the "plus" and "minus" framing? It's an unpronounced hyphen in DVD-R. Officially, the VD+ formats aren't even DVDs, because the Forum does not endorse them. So the dual connonation of DVD+R as (a) a DVD and (b) better than a "minus" is highly misdirectional. It is only "better" if your evaluation criteria completely excludes compatibility.
0 Agree

spath
Optical storage technical expert
Posted on: 26 Sep 03 23:49
The only advantage of - over + that I could find is copyright management : thanks to its pre-embossed informations, DVD-R(W) discs can be made much more difficult to copy. I asked Pioneer for more ideas but did not get any answer ; anyone who knows such advantage of - over + is welcome to mail me.
0 Agree

spath
Optical storage technical expert
Posted on: 26 Sep 03 23:54
Mainly because of linking and bit-settings (see the corresponding parts of the aticle). Note that DVD+R(W) have been created after their - counterpart, and they were certainly not designed to be less compatible.
0 Agree

spath
Optical storage technical expert
Posted on: 27 Sep 03 00:16
> I don't think this point should be underestimated. I think it is misleading for > Spath to criticize compatibilty based on players barfing over unexpected reserved > fields, but not mention that the reason that logical layer enhancements like > defect management were deliberately avoided in DVD-R was to maintain compatibility > with existing players (pre VD+.) It's easy to claim afterwards that you willingly did not include a feature you did not think about AT THAT TIME. Besides, which compatibility problems are you talking about ? > Players that barf over unexpected values or non-zero reserved fields are likely > to be in violation of the spec anyway. I don't have the specs, but it is common for > technical specs to recommend that reserved fields or unexpected values be ignored > in most cases. The exception to this would be a field whose specific purpose is to > declare an incompatible change. With these disc specs, reserved usually mean "must be filled with zeroes". The book type definition Oof DVD-ROM standard gives a number of authorized values but does not explicitely say what to do when other values are read. > Can I also object to the "plus" and "minus" framing? It's an unpronounced hyphen in > DVD-R. Officially, the VD+ formats aren't even DVDs, because the Forum does not > endorse them. So the dual connonation of DVD+R as (a) a DVD and (b) better than > a "minus" is highly misdirectional. It is only "better" if your evaluation criteria > completely excludes compatibility. Luckily I'm typing and not talking, so you cannot know how I pronounce "DVD-R"
0 Agree

dvdendec
New on Forum
Posted on: 28 Sep 03 12:59
A Wobble frequency for DVD+RW is too close to the channel bit frequency. 14T is the longest signal in the 8-16 modulation (EFM plus) and DVD+RW wobble is 16T in its half period. They are so close that the circuit has difficulty to separate them clearly. That is, the wobble signal can be distorted easily after writing on the DVD+RW disc. On the other hand, wobble frequency of DVD-R/RW is 93T in its half period and it's far from the 14T channel bit signal. It's easier to separate the main channel signal and the wobble signal from the signals from an optical pickup. The quality of the wobble signal is very crucial when the drive starts writing from the link point (at the gap). The wobble signal has to be so clear, without distortion and little jitter as possible, because it generates the writing channel bit clock via a PLL. But in the DVD+RW specification, it employs the lossless linking as a mandatory function. This allows only very small linking position error of the gap tolerance, i.e. so severe. It seems so harder to meet the required error/gap length of the link position than the DVD-R/RW system, especially when it comes to higher writing speed environment. Do you agree?
0 Agree

dvdendec
New on Forum
Posted on: 28 Sep 03 15:52
Hmmm, Philips (DVDRW416K, I believe it's the latest product at present) nor Ricoh don't seem to support DVD+MRW or EasyWrite for DVD+RW, supports only Mt Rainier for CD-RW. On the other hand, current Pioneer DVR-A06-J already supports DRT-DM : Destributed Real-time Defect Management that achives Prescision Recording Technology. Anyway, Microsoft already announced that the defect management would be supported in the Device Driver level in the coming Windows OS Longhorn due in 2005, for any of DVD-RW, DVD+RW and DVD-RAM defect management.
0 Agree

spath
Optical storage technical expert
Posted on: 03 Oct 03 23:55
The wobble quality is important indeed, but noy that much for the writing clock, which can be nicely generated even from a damaged wobble by adding a few tricks to the standard PLL. From my experience the most difficult part is address (LPP/ADIP) tracking, and I always found that reading LPP on a burned part or while burning a - disc was much more difficult than reading ADIP on a + one. And from my own tests + linking is still in practice much more precise than the 8 bits allowed by the standard, even at 8x. But in the end it all depends on the chipsets, and yours may behave differently from those I have tested.
0 Agree

spath
Optical storage technical expert
Posted on: 04 Oct 03 00:02
Yes, until +MRW is actually used in a drive DRT-DM is the best defect management system you can get. Note, however, that nothing in theory prevents + format to use DRT-DM/UDF2.0 too, while Mount Rainier will always be forbidden to - drives.
0 Agree

dvdendec
New on Forum
Posted on: 02 Nov 03 17:09
Yea, I agree, LPP Address would be harder to read while recording. But I'm wondering if reading LPP address while recording is meaningful. I mean, if you have noticed you are on the wrong track by reading LPP address, you've already burnt the wrong track. It's too late. Maybe monitoring the wobble would be reasonable? Actually, I think even -R/-RW drives have the loss-less linking feature, which has to be a pretty small link error such as 8 bits or less. Anyway, I agree it depends on the chipsets, and its OPU as well :g
0 Agree

dvdendec
New on Forum
Posted on: 02 Nov 03 17:16
Oh, great, +RW to use DRT-DM is possible indeed! But isn't Mt Rainier for -RW drives possible, at least, -RW discs in dual format drives? What forbid Mt Rainier on -RW discs?
0 Agree

spath
Optical storage technical expert
Posted on: 13 Nov 03 21:39
Because some regions of the lead-in which are needed for Mt Rainier are already used by -R(W) format for something else.
0 Agree

MaverickMitchell
CD Freaks Junior Member
Posted on: 15 Oct 04 08:25
Someone said "RW isn't a stable medium". Why is that? Please, someone explain. Thank you.
0 Agree

An Nord Draoi
New on Forum
Posted on: 30 Dec 04 11:34
You will be lucky if anyone bothers to explain that one. The poisonous words (rightfully) directed toward the RW format/discs is all over the Internet. Do a search via Google or at CDFreaks itself if you want to read any of it. It is a lot simpler to just accept that RW is not a good format. Besides, who *needs* RW? It is overpriced and a fringe-use format mainly found in specialised applications, not general usage.
0 Agree

TuDo
New on Forum
Posted on: 05 Jan 05 20:10
I have 3 stand-alone DVD players. I burned one -R and one+R. The +R can be read by all 3 players, The -R can be read by only one player. Which one is better ? I think we have the right answer.
0 Agree

[H]itman
CDFreaks Resident
Posted on: 07 Jan 05 02:56
I'm a +R with bitsetting user and I have found that for me it is the most compatible. However, in a thread where we were discussing DVD+R vs. DVD-R someone posted the following: "Also DVD+R uses high frequency wobbles for addressing (same as CD-R) while DVD-R uses LPPs. The demerit of using wobble for addressing is that the Pickup of your player can easily read the wobble next to the one it should read. A mag in japan has made some test about this and some DVD+R with a 100 min long movie got played back in only 95minutes because the Player skipped tracks because it got lost in the wobbles." Most of your article goes over my head, but to someone who doesn't know much about this stuff, the above quote (at face value) makes sense. My question is.. is there any truth to that?(the quote) Can the high frequency wobbles of DVD+R cause problems when playing back video?
0 Agree

abn104
New on Forum
Posted on: 28 Jan 05 05:03
Regarding RW stability and usage: Speeds are now much higher, prices are lower, and stability has apparently improved, especially with the new A-SERL technology that minimizes re-write degradation. For those who don't have a DVD-RAM drive and need to make regular backups of frequently changed data, as well as burn DVD +/-R, RW can be useful.
0 Agree

spath
Optical storage technical expert
Posted on: 06 Feb 05 19:08
No, that's completely wrong. It is much easier to miss a pre-pit than to miss a wobble period : as I explained, pre-pits are merely an amplitude modulation trick, while wobble phase inversions are very robust. Furthermore, if you misdetect only one pre-pit you can see a sync instead of a data bit, which makes -R format much more prone to sync errors.
0 Agree

bateman2006
New on Forum
Posted on: 19 Dec 05 02:16
That was a great read! I was lied to by someone at one of the retail chains, then. I was searching for a DVD recorder, and finally decided on the Pioneer DVR-225S. I was told, by someone at one of the chains, that DVD- is becomming MORE popular and more common in units. In all the units i saw a year ago, when i bought my unit, DVD+ format was more prevalent. I always found it odd that when I use DVD+ media in my computer's burner, it always has to format the disc. When using DVD-, i never get a message in the software that the disc needs formatting. I, along with everyone else, thanks you for clearing this confusion up. Now, the makers of DVD+ need to exploit such information so they can sell more units. LOL
0 Agree

FreqNasty
Banned
Posted on: 19 Dec 05 06:20
Fact is, dvd-r is more compatible than non dvdrom booktype dvd+r but dvd+R set to booktype dvdrom is more compatible than dvd-r. Anyway, compatibility issues are only apparant on old dvd players and usually that was using dvd+r discs not bitset, I've never had a dvd-r that hasn't worked on an old player. All new dvd players have been tweaked to play all formats, even dvd+r not bitset to dvdrom.
0 Agree

Post your comment

Myce.com settings

Several settings at Myce.com can be changed, they are stored in cookies, which means they will be reset if you clear Myce.com cookies

Background

Change the background to a plain color or trianglified image (similar to the default image)

No tracking features

At Myce most social media feature are done server side and impose no privacy risk to the visitor when not used. Several features use Javascript with you can turn off here

Layout

Switch to the List layout for an index with chronologycally listed news items or Grid layout for a block based layout. To see the change you need to reload the page

×