Crucial MX300 2TB SSD Review

Test machine

For this review I will be using a computer
with the following configuration:

PC 1:

  • Motherboard: ASUS X99-A (Intel X99 chipset)
  • Processor: Intel Core i7 5280K @ 4.4GHz
  • RAM: RAM: Crucial Ballistix Elite 4x8GB
  • GFX: MSI GTX 960 2GB
  • Sound: Onboard Realtek HD audio
  • OS SSD: HyperX Fury 240GB
  • PSU: Seasonic 750W
  • Display: Futsiju Siemens 22”
  • Operating System: Windows 10 x64


PC 2:

  • Motherboard: ASUS H110M-A/M.2 (Intel H110
  • Processor: Intel Celeron G3900
  • RAM: RAM: Crucial 2133 4x4GB DDR4
  • GFX: Intel HD 510
  • Sound: Onboard
  • OS SSD: Netac
    N580 m.2 240GB
  • PSU: Thermaltake 400W
  • Display: Futsiju Siemens 22”
  • Operating System: Windows 10 x64


PC 2 is only used to measure the idle power consumption of
the test drive, all other tests and power measures are done with PC 1.

The Crucial MX300 2TB SSD was connected to second
SATA port on the ASUS X99-A motherboard. All power saving features were
disabled during all of my synthetic benchmarks.

Crucial MX300 2TB SSD Review

SATA 6Gbps drivers used on our review PC were Intel Rapid Storage Technology
(RST) Version

Test applications

To test the performance of the Crucial
MX300 2TB SSD, I will be using the following test applications in this review.

Test procedures

I will start off our testing procedures
explanation by stating that I did not run many synthetic benchmarks on the Crucial
MX300 2TB SSD. You may ask why I have run so few synthetic benchmarks.

SSD technology has moved so fast in the
last couple of years, that basic synthetic benchmarks alone are now of very
limited use, as they don’t really tell us much about performance and how the
drive will behave in the real world. I have therefore decided to show some
basic benchmarks for the Crucial MX300 2TB SSD, and will complement this with
advanced benchmarks using IOMeter and AS SSD benchmark. I will also show how
the Cruail MX300 2TB SSD performs in the real world.

The reality of SSD performance

While I can easily show you which SSD is
technically the faster, when you use one of these modern SSDs as an operating
system drive it becomes very difficult to tell them apart as far as performance
is concerned.

A typical use of a small capacity SSD at
the moment is to have your operating system and applications installed onto the
SSD. The performance difference compared to a traditional HDD is enormous,
however when you start to compare SSD to SSD the difference becomes almost
impossible to detect.

Let’s look at why this is the case.

Drive A can boot to the desktop in 8.11
seconds, and drive B can boot to the desktop in 8.12 seconds, the difference in
time is milliseconds, and can one really tell the difference?

The fact is, all modern SSDs are only
ticking over when they are only running the OS and launching applications, it’s
only when you get to some of the larger capacity SSDs, with enough free space
to be able to hold the actual data that you’re going to be working with, be
that video, audio or pictures, for example, that you actually get a tangible
difference in performance. This is where the SSDs with the better sequential
performance start to pull well ahead of the SSDs which have lower sequential
read/write performance.

Small file random IOPS vs sequential performance


This is a fairly complex subject, but I
will do my best to explain things in a manner that is easy to understand.

The term IOPS is the amount of input or
output transactions that can take place in a one second interval, so for
example, if an SSD is quoted as being able to cope with 20,000 4K random write
IOPS, then the SSD should be able to cope with 20,000 input transactions in a
period of one second. If the same SSD is said to be able to produce 20,000 4K
random read IOPS, then the same SSD should be able to produce 20,000 4K random
read output transactions in a one second interval.

Ok, now we have some figures to work with,
the next question is how many IOPS are actually required?

This will depend on your usage pattern. If
you are a typical desktop user who browses the internet, does some word
processing or perhaps some audio or video editing, and perhaps plays a few
games, then in actual fact, you don’t need to have massive 4K random read/write
performance. The actual amount of 4K random performance that is required for a
fast and smooth running system for a desktop user with a usage pattern similar
to the above will be well under 1,000 4K IOPS.

On the other hand, if the SSD is being used
for running a large and complex database server, then 4K random performance is
the absolute measurement of how fast that server will run, as this type of application
does most of its input and output transactions in the 4K domain.

So why would I need an SSD with 80,000 4K
IOPS for a desktop?

In fact you don’t need this type of
performance for a desktop, but an SSD which is capable of coping with 80,000 4K
IOPS will be faster than an SSD which can only cope with 20,000 4K IOPS.

OK, I just said if under 1,000 4K IOPS are
actually required for typical desktop usage, why is an SSD with 80,000 4K IOPS
faster than an SSD with only 20,000 4K IOPS, confused?

You may ask, if I only require 1,000 4K
IOPS surely the rest is wasted?

While you may never need 80,000 4K IOPS,
IOPS is all about latency. The reason that an SSD can cope with as much as 80,000
4K IOPS is because latency in this domain is very low. With 4K files, even if
you require to process 500 of them at the same time, you are not talking about
a huge amount of data, it has far more to do with how long it takes the SSD to
process a single file, and the amount of time required to process a single 4K
is all about how long it takes for the SSD to access or store that data before
it can move on to the next transaction.

In other words an SSD with 80,000 4K IOPS
performance will handle those 500 files faster than the SSD with 20,000 IOPS.

So how will a desktop user even notice this
faster speed if so little 4K random IOPS and data are actually used?

Multitasking is a good example. The more
tasks you run at the same time, you more you will notice the speed difference.

Sequential performance

I have always maintained that sequential
performance was every bit as important as small random file performance for a
desktop SSD. Some highly regarded people on other sites found this statement
quite funny a couple of years ago when I made it, but my, how times have
changed in the world of SSD reviewing.

To me this was always so obvious for a
desktop user. For example, let’s say you want to launch an application or game.
Both have some fairly large files to load, and also a great many small files,
but the point is, even the smaller files are sequential in nature. Now let’s
say you’re into audio or video editing. Video files tend to be huge, and the
files are written or read sequentially. Isn’t this how many users are using
their PCs these days?


So how does this shape up in the real
world? Which is better, massive 4K IOPS or massive sequential performance?

In an ideal world you want both, as an SSD
with massive random 4K IOPS and sequential performance will always be faster
than an SSD that has high sequential performance and moderate 4K random IOPS
performance, and the same applies to an SSD that has massive 4K random
performance and moderate sequential performance. The SSD which has high
performance in both patterns will always be the faster SSD.

However, you can still have an SSD that is
very fast for desktop use that has moderate random 4K performance and massive
sequential performance, the same can be said about a drive having massive
random 4K performance and moderate sequential performance, as it is about
getting the balance right if you have to compromise on one or the other.

Drive preparation for running the tests

All the SSDs used in this article were in a
clean and fresh state when the testing period started. From then on, each drive
had to rely on its own NAND cleaning effectiveness for the remainder of the

  • Both our spinning HDD drives were
    defragged before the start of each test.
  • All SSD and HDD used in this article had
    their partitions aligned to the Windows 7 x64 defaults.

Where I use graphs in this article to
display results, I will use the following colours to make it easier, for our
readers to see which drive we are reviewing.

Crucial MX300 2TB SSD Review Crucial MX300 2TB SSD

Crucial MX300 2TB SSD Review Comparison SDD


Now let’s head to the next page, where I
look at some basic benchmarks…