Toshiba HK4E SATA 1600GB Enterprise SSD Review



Toshiba HK4E SATA 1600GB Enterprise SSD Review

Toshiba THNSN81Q60CSE


by:  Toshiba





Welcome to Myce’s review of the Toshiba HK4E series of SATA
Enterprise SSDs.

This review marks an exciting step forward for Myce as it is
the first review in which we have used our new OakGate Test Platform. The new
OakGate test bench is a state of the art platform which provides us with the
ability to test all types of SSDs, including SATA, SAS 2, SAS 3, and PCIe/NVMe,
in one integrated solution. We plan to publish a review/profile of our new OakGate
Test Platform in the near future.

The Toshiba HK4E is available in capacities of 200, 400, 800,
and 1600GB. The subject of this review is the 1.6TB model – the THNSN81Q60CSE.

In this review, I draw readers’ attention to the
Myce/OakGate 4K Latency Write Test, where one can see a fascinating insight in
to the behaviour and impact of the Toshiba THNSN81Q60CSE’s firmware – please
see Page 6.    


Market Positioning and Specification

Market Positioning

This is how Toshiba positions the HK4E Series –

Toshiba HK4E SATA 1600GB Enterprise SSD Review

Toshiba HK4E SATA 1600GB Enterprise SSD Review


Here is Toshiba’s specification for the HK4E Series –


Toshiba HK4E SATA 1600GB Enterprise SSD Review


Here is a picture of the Toshiba THNSN81Q60CSE that I tested

Toshiba HK4E SATA 1600GB Enterprise SSD Review

The Toshiba HK4E Series uses Toshiba’s 15nm MLC NAND and a
proprietary Toshiba controller.

Now let’s head to the next page, to look at Myce’s
Enterprise Testing Methodology…..



Testing Methodology

Please click
to view or download a detailed introduction to Myce’s Enterprise Class Solid
State Storage (‘SSS’) Testing Methodology as a PDF.

Put briefly:

All testing is performed on a state of the art OakGate
Technology test bench.

We perform two sets of Performance Tests:

A full set of the Storage Network Industry Association’s (‘SNIA’) tests
with mandatory parameters, as specified in their Solid State Storage
Performance Test Specification Enterprise V1.0.

A set of tests, known as the ‘Myce/OakGate Full Characterisation Test
Set’, that provides readers with a fuller characterisation of the solution.

We also review other important factors such as Data
Reliability and Failover features.

Before we move on, let’s remind ourselves of some basics –

When reviewing the performance of an SSS solution there are
three basic metrics that we look at:

IOPS – the number of Input/Output Operations per Second

Bandwidth – the number of bytes transferred per second (usually measured
in Megabytes per second, ‘MB/s’)

Latency – the amount of time each IO request will take to complete
(usually, in the context of SSS solutions, measured in Microseconds, which are
millionths of a second).

It is true to say that IOPS and Bandwidth had all been
growing rapidly before the advent of SSS solutions, but Latency can only be significantly
decreased by eliminating mechanical devices, and thus Latency is the single
most important aspect that SSS solutions deliver to enhance performance.

Latency in a technical environment is synonymous with delay.
In the context of an SSS solution it is the amount of time between an IO
request being made, and when the request is serviced.

Bandwidth, also commonly referred to as ‘Throughput’, is the
amount of data that can be transferred from a storage device to a host, in a
given amount of time.  In the context of SSS solutions it is typically measured
in Megabytes per second (MB/s). 

A great enterprise SSS solution offers an effective balance
of all three metrics.  High IOPS and Bandwidth is simply not enough if Latency
(the delay in an IO operation) is too high. As we will see in the test results
presented below, as Latency increases IOPS will inevitably decrease.

Queue Depth is the average amount of IO requests
outstanding.  If you are running an application and the Average Queue Depth is
one or higher and CPU utilisation is low, then the application’s performance is
most probably suffering from a ‘Storage Bottleneck’.

Another important factor to remember is that SSS performance
is influenced by previous workloads, not just the current workload, and
especially by what has previously been written to the drive. As specified in
the SNIA SSS PTS the goal of all good Enterprise level testing is to provide
consistent circumstances, so that results can be compared fairly across
different SSS solutions – it is for this reason that all of our tests start
with a purge of the drive, so that it starts in a ‘Fresh Out of the Box’ (FOB)
state.  Most tests then have a pre-conditioning phase where the drive is put
into a ‘Steady State’ before the test phase begins. Put briefly, a ‘Steady
State’ is achieved when the performance of the drive no longer varies over time
and settles into a consistent level of performance for the workload in hand. You
can find a detailed explanation of ‘Steady State’ and how it is determined in
the SNIA tests in our Enterprise Testing Methodology paper, which can be viewed
or downloaded as a PDF by clicking here.

For interest, here are some
generally accepted assumptions that differentiate the use and therefore the
approach to testing Enterprise/Server and Consumer/Client SSS solutions:

Enterprise/Server SSS

The drive is always full

The drive is being accessed 100% of the time (i.e. the drive gets no
idle time)

Failure is catastrophic for many users

The Enterprise market chooses SSS solutions based on their performance
in steady state, and that steady state, full, and worst case are not the same

Consumer/Client SSS

The drive typically has less than 50% of its user space occupied

The drive is accessed around 8 hours per day, 5 days per week, and
typically data is written far less frequently

Failure is catastrophic for a single user

The consumer/client market generally chooses SSS solutions based on
their performance in the FOB state


Now let’s head to the next page, to look at the results
of our SNIA IOPS (Input/Output Operations per Second) Test…..